render.plot
render.plot(self, _fn=None, *, alt=None, width=MISSING, height=MISSING, **kwargs)
Reactively render a plot object as an HTML image.
Parameters
alt: Optional[str] = None
-
Alternative text for the image if it cannot be displayed or viewed (i.e., the user uses a screen reader).
width: float | None | MISSING_TYPE = MISSING
-
Width of the plot in pixels. If
None
orMISSING
, the width will be determined by the size of the corresponding output_plot. (You should not need to use this argument in most Shiny apps–set the desired width on output_plot instead.) height: float | None | MISSING_TYPE = MISSING
-
Height of the plot in pixels. If
None
orMISSING
, the height will be determined by the size of the corresponding output_plot. (You should not need to use this argument in most Shiny apps–set the desired height on output_plot instead.) **kwargs:
object
= {}-
Additional keyword arguments passed to the relevant method for saving the image (e.g., for matplotlib, arguments to
savefig()
; for PIL and plotnine, arguments tosave()
).
Returns
Type | Description |
---|---|
A decorator for a function that returns any of the following: 1. A matplotlib.figure.Figure instance. 2. An matplotlib.artist.Artist instance. 3. A list/tuple of Figure/Artist instances. 4. An object with a ‘figure’ attribute pointing to a matplotlib.figure.Figure instance. 5. A PIL.Image.Image instance. |
|
It’s also possible to use the matplotlib.pyplot interface; in that case, your |
|
function should just call pyplot functions and not return anything. (Note that if | |
the decorated function is async, then it’s not safe to use pyplot. Shiny will detect | |
this case and throw an error asking you to use matplotlib’s object-oriented | |
interface instead.) |
Tip
The name of the decorated function (or @output(id=...)
) should match the id
of a output_plot container (see output_plot for example usage).
See Also
Examples
#| standalone: true
#| components: [editor, viewer]
#| layout: vertical
#| viewerHeight: 400
## file: app.py
import matplotlib.pyplot as plt
import numpy as np
from shiny import App, Inputs, Outputs, Session, render, ui
app_ui = ui.page_fluid(
ui.input_slider(
"n", "input_slider()", min=10, max=100, value=50, step=5, animate=True
),
ui.output_plot("p"),
)
def server(input: Inputs, output: Outputs, session: Session):
@render.plot
def p():
np.random.seed(19680801)
x_rand = 100 + 15 * np.random.randn(437)
fig, ax = plt.subplots()
ax.hist(x_rand, int(input.n()), density=True)
return fig
app = App(app_ui, server)